Fundamental Domains of Some Drinfeld Modular Curves

نویسندگان

  • Chris Hall
  • CHRIS HALL
چکیده

We construct fundamental domains for arithmetic subgroups of Γ = GL2(Fq [t]). Given ∆ ⊇ Γ(a) we construct a contracted form T of the Bruhat-Tits tree T and a fundamental domain F of ∆ acting on T. We define a lift of F to F ⊂ T called the “bipartite” lift. We show that F is a fundamental domain of ∆ acting on T precisely when F is “∆-compressed.”

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Rational Points on Drinfeld Modular Varieties over Finite Fields

Drinfeld and Vladut proved that Drinfeld modular curves have many Fq2 -rational points compared to their genera. We propose a conjectural generalization of this result to higher dimensional Drinfeld modular varieties, and prove a theorem giving some evidence for the conjecture.

متن کامل

Introduction to Drinfeld Modules

(1) Explicit class field theory for global function fields (just as torsion of Gm gives abelian extensions of Q, and torsion of CM elliptic curves gives abelian extension of imaginary quadratic fields). Here global function field means Fp(T ) or a finite extension. (2) Langlands conjectures for GLn over function fields (Drinfeld modular varieties play the role of Shimura varieties). (3) Modular...

متن کامل

Explicit towers of Drinfeld modular curves

We give explicit equations for the simplest towers of Drinfeld modular curves over any finite field, and observe that they coincide with the asymptotically optimal towers of curves constructed by Garcia and Stichtenoth.

متن کامل

The André-Oort conjecture for products of Drinfeld modular curves

Let Z = X1×· · ·×Xn be a product of Drinfeld modular curves. We characterize those algebraic subvarieties X ⊂ Z containing a Zariski-dense set of CM points, i.e. points corresponding to n-tuples of Drinfeld modules with complex multiplication (and suitable level structure). This is a characteristic p analogue of a special case of the André-Oort conjecture.

متن کامل

The Rigid Analytical Regulator and K2 of Drinfeld Modular Curves

We evaluate a rigid analytical analogue of the Beilinson-Bloch-Deligne regulator on certain explicit elements in the K2 of Drinfeld modular curves, constructed from analogues of modular units, and relate its value to special values of L-series using the Rankin-Selberg method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005